SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem

نویسندگان

  • Zhaojun Bai
  • Yangfeng Su
چکیده

We first introduce a second-order Krylov subspace Gn(A,B;u) based on a pair of square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace Kn(A;v), which is spanned by a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single coefficient matrix A and an initial vector v. Then we present a second-order Arnoldi (SOAR) procedure for generating an orthonormal basis of Gn(A,B;u). By applying the standard Rayleigh– Ritz orthogonal projection technique, we derive an SOAR method for solving a large-scale quadratic eigenvalue problem (QEP). This method is applied to the QEP directly. Hence it preserves essential structures and properties of the QEP. Numerical examples demonstrate that the SOAR method outperforms convergence behaviors of the Krylov subspace–based Arnoldi method applied to the linearized QEP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem

The Quadratic Arnoldi algorithm is an Arnoldi algorithm for the solution of the quadratic eigenvalue problem, that exploits the structure of the Krylov vectors. This allows us to reduce the memory requirements by about a half. The method is an alternative to the Second Order Arnoldi method (SOAR). In the SOAR method it is not clear how to perform an implicit restart. We discuss various choices ...

متن کامل

A Refined Second-order Arnoldi (RSOAR) Method for the Quadratic Eigenvalue Problem and Implicitly Restarted Algorithms

To implicitly restart the second-order Arnoldi (SOAR) method proposed by Bai and Su for the quadratic eigenvalue problem (QEP), it appears that the SOAR procedure must be replaced by a modified SOAR (MSOAR) one. However, implicit restarts fails to work provided that deflation takes place in the MSOAR procedure. In this paper, we first propose a Refined MSOAR (abbreviated as RSOAR) method that i...

متن کامل

Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem

We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...

متن کامل

Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and ...

متن کامل

Stability Analysis of the Two-level Orthogonal Arnoldi Procedure

The second-order Arnoldi (SOAR) procedure is an algorithm for computing an orthonormal basis of the second-order Krylov subspace. It has found applications in solving quadratic eigenvalue problems and model order reduction of second-order dynamical systems among others. Unfortunately, the SOAR procedure can be numerically unstable. The two-level orthogonal Arnoldi (TOAR) procedure has been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005